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Abstract

In this technical report, we demonstrate our solution for
the 2019 COCO panoptic segmentation task. Our method
first performs instance segmentation and semantic segmen-
tation separately, then combines the two to generate panop-
tic segmentation results. To enhance the performance, we
add several expert models of Mask R-CNN in instance seg-
mentation to tackle the data imbalance problem in the train-
ing data; also HTC model is adopted yielding our best in-
stance segmentation results. In semantic segmentation, we
trained several models with various backbones and use an
ensemble strategy which further boosts the segmentation re-
sults. In the end, we analyze various combinations of in-
stance and semantic segmentation, and report on their per-
formance for the final panoptic segmentation results. Our
best model achieves PQ 47.1 on 2019 COCO panoptic test-
dev data.

1. Introduction
Panoptic segmentation is a challenging task in the com-

puter vision community which can help solving problems
of scene understanding including autonomous driving. The
coherent scene segmentation problem can be solved by
combining instance and semantic segmentation. The aim
for instance segmentation is to first detect and locate all
foreground objects by bounding boxes, then for a detected
object, assign a category label and an index number on all
related pixels of that object. The goal of semantic segmen-
tation is to classify all pixels in an image into different cat-
egory labels, whereas it does not consider indices of ob-
jects. Both tasks have their own limitations for image seg-
mentation. In order to generate a dense and coherent scene
segmentation, panoptic segmentation was introduced in [8]
combining the strengths of instance and semantic segmenta-
tion with the aim to assign a category label and an instance

index for each pixel of a given image.
We use MS COCO[9] dataset for this challenge. For im-

age segmentation tasks, MS COCO provides both training
and validation data in the form of images and comprehen-
sive annotations for all three segmentation tasks. These data
are commonly used by the vision community, and related
vision competitions for object detection and segmentation
are yearly held.

In our solution to panoptic segmentation, we use a stan-
dard approach of combining instance and semantic segmen-
tation as described in [8]. To realize this, we adopted the
commonly used Mask R-CNN[6] and the powerful Hybrid
Task Cascade (HTC)[2, 3] for instance segmentation. Mask
R-CNN extends Faster R-CNN[12] originally designed for
object detection by adding a separate branch for mask pre-
diction, thereby predicting pixel level object masks in par-
allel to predicting the bounding box positions of objects.
The HTC framework offers a special cascaded combination
of R-CNN and gives the best performance in 2018 COCO
object detection challenge1. In semantic segmentation, we
adopted DeepLabv3[4] network, which combines concepts
of spatial pyramid pooling and dilated convolutions to ex-
tract information in the image at different scales and to cap-
ture information from a larger effective field of view. In the
final combination step, we use the panopticAPI[8] to com-
bine the predictions generated from instance and semantic
models to yield the final panoptic results.

For our implementation, we adopted the open source ma-
chine learning framework Pytorch[11] as well as the accom-
panying torchvision library. They are widely used by the
vision community, which allows us to quickly experiment
with different pre-trained models and network architectures.

Segmentation experiments were conducted on a fully au-
tomated cloud pipeline on AWS including training, predic-
tion, evaluation, as well as real time visualization of seg-

1http://cocodataset.org/#detection-leaderboard,
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mentation results.

2. Method Description

2.1. Dataset

In MS COCO dataset, the training data train2017(115k
images) along with annotations for instance, semantic and
panoptic segmentation respectively. The validation data
val2017 consists of 5k images, also with annotations.

All our experiments are trained on train2017, and the
reported instance and semantic evaluation results are vali-
dated on val2017. For panoptic segmentation, we also re-
port on test-dev, where we get the results from codalab sub-
mission page2. No external data is used.

Note that categories belong to stuff[1] in the COCO stuff
annotation are not the same as those in COCO panoptic an-
notations. We therefore use the converted stuff annotations
from panoptic annotations instead of the original stuff anno-
tations. We also treated all categories belonging to “thing”
as one “merged-thing” category.

2.2. Baseline

In the training session of our baseline method for panop-
tic segmentation, we trained a single model for instance
segmentation using Mask R-CNN[6], and a single model
for semantic segmentation using DeepLabv3[4] architec-
ture. For feature extraction, after examine the performance
of several backbones, we select the ResNet152[7] as the
backbone for Mask R-CNN and ResNet101 for DeepLabv3.
No ensemble, test time tricks or post processing tricks at any
level used in this baseline.

Note that for all experiments including the baseline, the
optimizer is consistent. We use Stochastic Gradient De-
scent(SGD) with momentum. For instance segmentation,
a multi-step learning scheduler (LR) with initial warm-up is
adopted, whereas for semantic segmentation, an additional
LR is used to generate a decaying LR curve using a multi-
plicative factor.

Our panoptic segmentation builds upon instance and se-
mantic segmentation therefore the performance of these two
has crucial influence on the final panoptic segmentation re-
sults. In the following section, we will report in detail, how
we improve this baseline by studying different strategies we
used for instance and semantic segmentation respectively.

2.3. Instance Segmentation

2.3.1 Mask R-CNN

To increase the instance segmentation accuracy, we per-
formed the following strategies upon our baseline using
Mask R-CNN.

2https://competitions.codalab.org/competitions/19507

Backbone. In order to select the backbone that per-
formed best with Mask R-CNN[6], we examined the per-
formance of the commonly used backbone ResNet50 and
ResNet152 with Mask R-CNN. As can be seen in Table 1,
the best performance is achieved with ResNet152, therefore
it was selected for multi-scale feature extraction.

Expert Models. The training data of instance segmenta-
tion illustrates highly imbalanced distribution for the cate-
gories. In particular, the most annotated categories are “per-
son” and “car” that may lead to inaccurate category bias of
training models[5]. To conquer this problem, we divided
the train2017 datasets in three subsets respectively, with the
first containing only annotations for “person” category, the
second for “car”, and the third for all other categories. We
then trained three expert models using Mask R-CNN frame-
work with ResNet152 backbone on each of the subsets. By
doing so, we achieved an increase of 0.8 mAP as shown in
Table 1.

2.3.2 Hybrid Task Cascade Framework

Besides of the Mask R-CNN framework, we also tested the
Hybrid Task Cascade(HTC) framework[2, 3] for instance
segmentation. We use HTC with X-101-64x4d-FPN back-
bone and deformable convolution in the last stage (res5) of
the backbone. Using this model, we get the highest bbox
mAP for instance segmentation, as shown in Table 1

2.4. Semantic Segmentation

In our semantic segmentation, we tested FCN[10] and
DeepLabv3[4]. As shown in Table 2, the segmentation
accuracy of FCN provides 6.7 mIoU lower compared to
DeepLabv3 baseline, therefore we choose DeepLabv3 as
our network. In order to examine its performance, we
trained multiple DeepLabv3 models with different back-
bones such as ResNet101 and ResNet152. Note that in the
training session, we combine all thing categories as one cat-
egory for “merged-thing”.

We find that the performance of all single models con-
verged similarly at around 43 mIoU. For example, with
ResNet101 we get mIoU of 43.4, with ResNet152 we get
mIoU of 43.2. In order to improve the accuracy, we ensem-
ble multiple models by taking the average of their pixel-
wise confidence map for each category. We use our top per-
forming semantic models for ensembling to improve perfor-
mance. The results will be discussed in the next section.

3. Experiments and Results

In this section, we report our experiment settings and
evaluation results. In the first step, we conducted exper-
iments on instance and semantic segmentation using the
standard evaluation measure of mean average precision
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Strategy Instance Segmentation mAP (bbox) mAP (mask)
Ins1 MaskRCNN ResNet50 37.9 34.6
Ins2 MaskRCNN ResNet152 41.3 37.1
Ins3 expert models for Ins2 42.1 38.0
Ins4 HTC + X-101-64x4d-FPN 50.7 43.9

Table 1: Instance segmentation results for various strategies
tested on val2017.

Strategy Semantic Segmentation mIoU
Sem1 FCN ResNet50 36.7
Sem2 DeepLabv3 ResNet101 43.4
Sem3 DeepLabv3 ResNet152 43.2
Sem4 Ensemble multiple models 44.5

Table 2: Semantic segmentation results for various strate-
gies tested on val2017.

(mAP) and mean Intersection over Union (mIoU), respec-
tively. In the second step, we tested the various combination
of them to study how we achieve our best panoptic segmen-
tation results. All the following experiments are trained on
dataset train2017, and the reported evaluation results are
validated on val2017. No external data is used. All train-
ings were executed on 8xGPU V100 AWS EC2-instances
and testing is done locally on GPU machines with 4x Titan
Xp.

We represent various experimental setup in Table 1. Our
first setup denoted as Ins1 is the trained Mask R-CNN with
ResNet50 backbone, where we get mAP 37.9 for bounding
box (bbox), and mAP 34.6 for mask. Then, we changed the
backbone to ResNet152 in Ins2 and get mAP for bbox 41.3
and for mask 37.1. This shows ResNet152 outperforms
ResNet50 for Mask R-CNN. Next, we tackle the data imbal-
ance problem in Ins3, and trained three expert models using
Mask R-CNN with ResNet152 on three subsets of training
data. This yields a further increase in mAP of 0.8 for bbox
and 0.9 for mask compared to Ins2, which shows that expert
models indeed help for the case of data imbalance. Further-
more, with Ins4 strategy, we adopt HTC in our pipeline to
improve instance performance. We achieve bbox 50.7 mAP
and mask 43.9 mAP using X-101-64x4d-FPN backbone.

In the first semantic segmentation experimental setup
(Sem1: Table 2), we get mIoU 36.7 for FCN architec-
ture, which is less than the other setups using DeepLabv3.
In Sem2 and Sem3, we test DeepLabv3 with backbones
ResNet101 and ResNet152 respectively. Their performance
is quite similar, converging to mIoU around 43. Although
the model with the larger backbone (ResNet152) promises
better mIoU score, we could not observe an improvement
compared to ResNet101 in our benchmarks. Another ap-
proach is to ensemble three DeepLabv3 models in Ins4, one
with ResNet101, the other two with ResNet152, yielding
our highest mIoU of 44.5. Compared to the best single
semantic model, we improve mIoU of 1.1 using ensemble

technique.
We now discuss our final panoptic segmentation results

by various combination of instance and semantic segmen-
tation. As shown in Table 3, our chosen baseline using the
best single model of Mask R-CNN and DeepLabv3 yields
PQ of 42.7 on dataset val2017 and 42.9 on dataset test-
dev. In setup Pan1 we enhanced the baseline by adding
expert models in instance segmentation yielding a higher
PQ in 43.7 for both data-sets. Similarly, in setup Pan2 we
enhanced the semantic segmentation using ensemble mod-
els, but keep instance segmentation unchanged as the base-
line. We get 43.2 and 43.4 for the two data-sets respec-
tively. This confirms that expert models and ensemble strat-
egy enhanced the baselines in different aspects. Next, we
use both enhancements in strategy Pan2 and Pan3 to achieve
our highest result for Mask R-CNN and DeepLabv3 with
PQ of 44.2 on both data-sets. Finally, changing the instance
framework to HTC, we get our highest PQ for the panoptic
segmentation challenge for 46.2 and 47.1 on the two data-
sets, respectively. This means that HTC not only contributes
in instance segmentation but also have a crucial influence on
panoptic results.

As an image example to illustrate our panoptic segmen-
tation result, we show in Figure 1 for a comparison between
baseline method and enhanced methods. Their segmenta-
tion behavior among different categories are roughly simi-
lar. However, strategy Pan4 works better than other methods
by detecting small parts of object like persons’ leg as shown
in Figure 1d.

4. Conclusion
We achieved PQ 47.1 for the 2019 COCO panoptic seg-

mentation task using combined approach of instance and se-
mantic segmentation. In our study, we proofed that ensem-
ble techniques and expert models indeed improve panoptic
segmentation quality. Albeit our combined segmentation
approach is computationally expensive compared to unified
approach, it is more flexible in incorporating and improv-
ing on recent developments in both instance and semantic
segmentation individually. Our future work may include
more investigation on expert models, ensemble techniques
and more framework or architecture, where we believe that
there is still space for improvement in these aspects.
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