
Joint COCO and Mapillary Workshop at ICCV 2019:
COCO Keypoint Challenge Track

Technical Report: Res-Steps-Net for Multi-Person Pose Estimation

Yuanhao Cai1,2∗ Zhicheng Wang1∗ Binyi Yin1,3 Ruihao Yin1,3 Angang Du1,4 Zhengxiong
Luo1,5 Zeming Li1 Xinyu Zhou1 Gang Yu1 Erjin Zhou1 Xiangyu Zhang1 Yichen Wei1

Jian Sun1

1Megvii Inc. 2Tsinghua University 3Beihang University
4Ocean University of China 5Chinese Academy of Sciences

1{caiyuanhao, wangzhicheng, yinbinyi, yinruihao, duangang, luozhengxiong,
lizeming, zxy, yugang, zej, zhangxiangyu, weiyichen, sunjian}@megvii.com

Abstract

Human poses vary greatly in viewpoints and scales in the
image. Thus, it is necessary to extract both good global and
local features to obtain accurate prediction. In this paper,
we propose a novel approach called Res-Steps-Net (RSN)
towards this purpose. It outperforms the state-of-the-art
methods by a large margin with only COCO labeled data
for training and less computation cost with input size 256×
192. Our single model achieves 78.0 in test-dev. Ensemble
models achieve 79.2 in test-dev and 77.1 in test-challenge,
which surpasses the winner of COCO Keypoint challenge
2018.

1. Introduction
Multi-person pose estimation is a fundamental task in

computer vision. Existing deep learning based methods
fall into two categories: top-down methods and bottom-up
methods. Top-down methods first detect the position of all
people, then estimate the pose of each person. Bottom-up
methods first detect all the human skeletal points in an im-
age and then assemble these points into groups to form dif-
ferent individuals.

The task of human pose estimation contains both local-
ization and classification factors. Local features benefit the
localization task, and global features are good for the clas-
sification task. Thus, both local and global features should

∗The first two authors contribute equally to this work. This work is
done when Yuanhao Cai, Binyi Yin, Ruihao Yin, Angang Du and Zhengx-
iong Luo are interns at Megvii Research.

Figure 1: The ResNet-18 and RSN-18 are used as back-
bone, respectively. The prediction results of ResNet-18 is
on the top line, and the prediction results of RSN-18 is on
the bottom line.

be treated properly. We propose a novel architecture named
Res-Steps-Net (RSN) for this problem. We follow the top-
down approach and use MegDet[8] as the human detector.
Figure 1 illustrates the results comparison between ResNet-
18[4] (with 2.3 GFLOPs) and RSN-18 (with 2.5 GFLOPs)
as backbone. It is shown that RSN-18 surpasses ResNet-
18 by a large extent in performance, especially, in “hard”
cases. Our method achieves state-of-the-art performance in
COCO Keypoint dataset.

2. Method
The overall pipeline of our method is illustrated in Fig-

ure 2. It is based on the pipeline in as [10], with some
modifications. The first stage is called init-stage. The latter
stages are called refine-stages. The init-stage incorporates
refine block (RB) and feature fusion block as shown in Fig-

1



RSN-50-init-stage

RB

RB

RB

RB

+

+

+

FFB

L2 loss

RSN-50-refine-stage-1

+

+

+

RSN-50-refine-stage-2

RSN-50-refine-stage-3

+

+

+

RSN-backbone

L2 loss

L2 loss

(a) Multi-stage

(b) Single-stage

+
(c) RB : Refine Block

3
×

3
 c

o
n
v G
lo

b
a

l 
p

o
o

l

1
×

1
 c

o
n
v

s
ig

m
o

id

dot +

3
×

3
 c

o
n
v

3
×

3
 c

o
n
v

b
n

R
e

L
U

R
e

L
U

1
×

1
 c

o
n

v

(d) FFB : Feature Fusion Block

Figure 2: The whole pipeline of RSN. (a) The pipeline of Multi-stage Network. (b) The pipeline of Single-stage network. (c)
The components of Refine Block. (d) The components of Feature Fusion Block.

ure 2. The backbone of a single stage is the proposed Res-
Steps-Net (RSN), which differs from ResNet in the struc-
ture of bottleneck, as shown in Figure 3.

2.1. Res-Steps-Net

Res-Steps-Net is designed for extracting better local and
global features. As shown in Figure 3, RSN bottleneck
firstly implements a conv1×1 (Convolutional layer with
kernel size 1×1), then divides the feature into four splits.
Each split feature fi (i = 1, 2, 3, 4) undergoes incremen-
tal numbers of conv3×3 (Convolutional layer with kernel
size 3×3). The output features yi(i = 1, 2, 3, 4) are then
concatenated to go through a conv1×1. An identity con-
nection is employed as the ResNet bottleneck. Because the
incremental numbers of conv3×3 look like steps, the net-
work is therefore named Res-Steps-Net. RSN is deeply
connected in bottleneck, so the low-level features are bet-
ter supervised, resulting in richer local features in network.
The receptive fields of RSN bottleneck are across several
scales, and the max one is 15. Compared with one scale
in ResNet bottleneck as shown in Table 1, RSN bottleneck
indicates more global features are viewed in the network.

We have explored the number of different branch archi-

Figure 3: The architecture of the bottleneck of ResNet and
RSN. The left one is of ResNet and the right one is of RSN.

tectures, as shown in Figure 4. The effect of different branch
numbers is investigated in the experiment section. Four
branches are eventually adopted.

2.2. Recursive Formula

As shown in Figure 2, we define the output feature of
each branch after passing through certain conv3×3 as y(i,j).

2



Figure 4: The architecture of different number of branches.
On the left is the architecture of two branches, on the right
is the architecture of three branches, and so on.

i denotes the serial number of branches and j denotes the
number of layers passed through conv3×3. K(i,j)() denotes
the jth conv3×3 of ith branch. Define y(i,0) = fi. Then
y(i,j) (j ≤ i) can be written as equation 1

y(i,j) =

{
K(i,j)(y(i,j−1)) , j = i

K(i,j)(y(i,j−1) + y(i−1,j)) , j < i
(1)

2.3. Receptive Field Calculation

In this part, we will calculate the receptive field range of
bottleneck of ResNet and RSN. First, the formula for cal-
culating the receptive field of the kth convolution layer is as
equation 2

lk = lk−1 + [(fk − 1) ∗
n∏

i=0

si] (2)

lk denotes the size of the receptive field corresponding
to layer k, fk denotes kernel size of layer k, and si denotes
the stride of layer i.

Using this formula, we calculate the receptive fields of
bottleneck of ResNet and RSN, as shown in Table 1. The
results show that the receptive field of feature obtained by
ResNet is 3 and the receptive field of feature obtained by
RSN is 3-15. Thus, RSN has a better fusion and non-linear
representation for different levels of features. In addition,
larger receptive field results in greater global features in the
network.

Architecture y1 y2 y3 y4
ResNet 3 3 3 3
RSN 3 5,7 7,9,11 9,11,13,15

Table 1: The receptive fields of bottleneck of ResNet and
RSN.

2.4. Multi Stage Network

As shown in the Figure 2 (a), the backbone of multi-
stage is 4×RSN-50, the refine-stage is the same with
Single-stage. In init-stage, we use extra two blocks to refine
the output features: Refine Block (RB) and Feature Fusion
Block (FFB).

Refine Block: The components of RB is shown in Fig-
ure 2 (c). RB consists of two paths. The upper one passes
through two layers of conv3×3. The lower one is an identity
connection. The two branches are then summed to output
features. The motivation of RB comes from ResNet. This
block refines the feature of each stage of RSN-50.

Feature Fusion Block: The components of FFB is
shown in Figure 2 (d). The first component of the block
is a conv3×3, then the block is divided into three paths.
The top path passes through global pool, two conv1×1 and
a sigmoid activation. Element-wise product is implemented
between the top two paths followed by element-wise sum
with the bottom identity path. This block is designed to
change the weight of each channel of the feature.

As for the output features of RSN-50, features of dif-
ferent levels are mixed together. These features contain
both low-level spatial texture information and high-level
global semantic information. Different levels of features
contribute differently to the final performance, so it is nec-
essary to change the proportion of each channel to make
different levels of features play a better role.

Set the input of FFB to fin, the number of its channel
is c, and set the output of FFB to fout. When fin passes
through the top path, a weight vector α can be obtained, the
number of its channel is also c. K() denotes the conv3×3.
Then we can get the equation 3.

fout = K(fin) +K(fin) ∗ α (3)

3. Experiments

COCO dataset [5] contains over 200000 images and
250000 person instances labeled with 17 joints. We only
use the COCO train17 dataset for training including 57K
images and 150K person instances. We evaluate our ap-
proach on the COCO minival dataset (includes 5K images)
and the testing sets includes test-dev set (20K images) and
test-challenge set (20K images).

3



Method AP GFLOPs
4×ResNet-50 76.8 19.9
4×ResNet-50 + RB 77.0 22.0
4×ResNet-50 + FFB 77.0 21.8
4×ResNet-50 + RB + FFB 77.2 23.9
4×RSN-50 78.6 26.5
4×RSN-50 + RB 78.8 28.6
4×RSN-50 + FFB 78.8 28.4
4×RSN-50 + RB + FFB 79.0 30.5

Table 2: Results of ablation experiments of RB and FFB on
4×ResNet-50 and 4×RSN-50

Backbone AP GFLOPs
RSN-2branch-50 74.4 6.9
RSN-3branch-50 74.5 6.5
RSN-4branch-50 74.7 6.3
RSN-5branch-50 74.3 6.2
RSN-6branch-50 73.8 5.7

Table 3: Results on different number of branches

backbone input size AP GFLOPs
ResNet-18 256×192 70.7 2.3
RSN-18 256×192 73.2 2.5
ResNet-50 256×192 72.2 4.4
RSN-50 256×192 74.7 6.3
ResNet-hourglass-2stage 256×192 72.3 6.1
RSN-hourglass-2stage 256×192 75.0 9.3
ResNet-101 256×192 73.2 7.5
RSN-101 256×192 75.8 11.5
4×ResNet-50 256×192 77.2 23.9
4×RSN-50 256×192 79.0 30.5
4×ResNet-50 384×288 77.9 53.8
4×RSN-50 384×288 79.4 68.6

Table 4: Results on ResNet and RSN

We follow the standard evaluation metric. Our approach
is evaluated in OKS (Object Keypoints Similarity) based
mAP, where OKS defines the similarity between different
human poses.

In this part, we validate experiments on ResNet and
RSN. Except that the experiments of 4×ResNet-50 and
4×RSN-50 were carried out with the architecture of Multi-
stage, the others were implemented with the architecture of
Single-stage and RB and FFB are not used in the hourglass
network.

Note that, in all the comparative experiments on ResNet
and RSN, the only variable is the architecture of bottleneck.

The human detector we used in ablation study is MegDet[8]
which has 49.4 AP on COCO minival set.

Training Details. Single-stage network is trained on
8 Nvidia GTX 2080Ti GPUs with mini-batch size 32 per
GPU. There are 60k iterations per epoch and 400 epochs
in total. Adam optimizer is adopted and the linear learning
rate gradually decreases from 3e-4 to 0. The weight decay is
1e-5. Multi-stage network is trained on 8 V100 GPUs with
mini-batch size 48 per GPU. There are 140k iterations per
epoch and 200 epochs in total. Adam optimizer is adopted
and the linear learning rate gradually decreases from 5e-4
to 0. The weight decay is 1e-5.

Each image goes through a series of data augmentation
operations including cropping, flipping, rotation and scal-
ing. The range of rotation is −45◦ ∼ +45◦. The range
of scaling is 0.7∼1.35. The input size in Section 3.1 and
Section 3.2 is 256×192.

Testing Details. We apply a post-Gaussian filter to the
estimated heat maps. We average the prediected heat maps
of original image with results of corresponding flipped im-
age following the strategy of [6]. Then a quarter offset from
the highest response to the second highest one is implement-
ted to obtain the locations of key points. Same as in [2], the
pose score is the multiplication of the average score of key
points and the bounding box score.

3.1. RB and FFB

The effect of FFB and RB on performance in the Multi-
stage architecture. We perform ablation experiments on
4×ResNet-50 and 4×RSN-50. The results are shown in
Table 2.

From Table 2, we can see that the use of RB and FFB in
the Multi-stage architecture each obtains 0.2 AP gain in a
relative high baseline. Both 4×ResNet-50 and 4×RSN-50
in the rest of this paper employ RB and FFB in Multi-stage
architecture as default setting.

3.2. The Architecture Choice of the RSN Bottleneck

Ablation experiments are done in order to validate The
architecture choice of the RSN bottleneck. The experiment
results are shown in Table 3.

Comparing AP and GFLOPs, we can find that when the
number of branches is 4, the network has the best perfor-
mance, so we finally adopt this architecture as RSN.

3.3. Ablation study of RSN

In order to verify the high performance of RSN, we have
done extensive experiments on ResNet[4] and RSN. The ex-
perimental results are shown in Table 4. The experiment
results in Table 4 plotted as polygons are shown in Fig-
ure 5. RSN always works better than ResNet with the same
GFLOPs. In addition, it is worth noting that RSN has a con-
siderable performance when the computation complexity is

4



Method Backbone Input Size GFLOPs AP AP.5 AP.75 AP(M) AP(L) AR
CMUpose[1] - - - 61.8 - - - - -

G-MRI[7] ResNet-101 353×257 57.0 64.9 85.5 71.3 62.3 70.0 69.7
G-RMI∗[7] ResNet-101 353×257 57.0 68.5 87.1 75.5 65.8 73.3 73.3

CPN[2] ResNet-Inception 384×288 - 72.1 91.4 80.0 68.7 77.2 78.5
CPN+ [2] ResNet-Inception 384×288 - 73.0 91.7 80.9 69.5 78.1 79.0

SimpleBase[11] ResNet-152 384×288 35.6 73.7 91.9 81.1 70.3 80.0 79.0
HRNet-W32[9] HRNet-W32 384×288 16.0 74.9 92.5 82.8 71.3 80.9 80.1
HRNet-W48[9] HRNet-W48 384×288 32.9 75.5 92.5 83.3 71.9 81.5 80.5

Simple Base∗ + [11] Res-152 384×288 - 76.5 92.4 84.0 73.0 82.7 81.5
HRNet-W48∗[9] HRNet-W48 384×288 32.9 77.0 92.7 84.5 73.4 83.1 82.0

MSPN∗[10] 4×ResNet-50 384×288 46.4 77.1 93.8 84.6 73.4 82.3 82.3
Ours(RSN) 4×RSN-50 256×192 30.5 78.0 94.2 86.5 75.3 82.2 83.4

Ours(RSN+) 4×RSN-50 - - 79.2 94.4 87.1 76.1 83.8 84.1

Table 5: Results on COCO test-dev sets compared with other methods. ”+” means using a ensemble model and ”*” means
using external data

Method Backbone Input Size AP AP.5 AP.75 AP(M) AP(L) AR
Mask R-CNN∗[3] ResX-101-FPN - 68.9 89.2 75.2 63.7 76.8 75.4

G-RMI[7] Res-152 353×257 69.1 85.9 75.2 66.0 74.5 75.1
CPN+[2] Res-Inception 384×288 72.1 90.5 78.9 67.9 78.1 78.7

Sea Monsters∗+ - - 74.1 90.6 80.4 68.5 82.1 79.5
Simple Base∗ + [11] Res-152 384×288 74.5 90.9 80.8 69.5 82.9 80.5

MSPN∗ + [10] 4×ResNet-50 384×288 76.4 92.9 82.6 71.4 83.2 82.2
Ours(RSN+) 4×RSN-50 384×288 77.1 93.3 83.6 72.2 83.6 82.6

Table 6: Results on COCO test-challenge sets compared with other methods. ”+” means using a ensemble model and ”*”
means using external data.

relatively low. This indicates that RSN can maintain both
high accuracy and low computation cost. From the experi-
mental results, we can draw a conclusion that RSN is much
more effective than ResNet as for the backbone of human
pose estimation.

Figure 5: Illustrating how the performances of RSN and
Resnet are affected by GFLOPs

3.4. Results on COCO test-dev and test-challenge
datasets

Our final model is 4×RSN-50. The results on test-dev
and test-challenge are shown in Table 5. and Table 6. Our
single model trained only by COCO train17 dataset with in-
put size 256 × 192 achieves 78.0 AP on test-dev datasets
and outperforms state-of-art methods by a large margin.
The ensemble model obtains 79.2 AP on test-dev dataset
and 77.1 AP on test-challenge dataset.

4. Conclusion

In this paper, we propose a novel network Res-Steps-
Net (RSN) for human pose estimation. This network is de-
signed for better extracting both local and global features.
RSN is more effective in feature representation, thus, it re-
mains high performance with a relatively low computation
cost. For example, RSN-18 with 2.5 GFLOPS can achieve
73.2 AP COCO minival. Our single model trained only by
coco train17 dataset with 256×192 input size outperforms
the state-of-art methods with input size 384×288 with extra

5



data by a large margin.

References
[1] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affin-
ity fields. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 5

[2] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network
for multi-person pose estimation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018. 4, 5

[3] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In The IEEE International Conference
on Computer Vision (ICCV), Oct 2017. 5

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 1, 4

[5] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: com-
mon objects in context. In ECCV, pages 740–755, June 2014.
3

[6] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In The European Confer-
ence on Computer Vision (ECCV), 2016. 4

[7] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander
Toshev, Jonathan Tompson, Chris Bregler, and Kevin Mur-
phy. Towards accurate multi-person pose estimation in the
wild. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), July 2017. 5

[8] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu
Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large
mini-batch object detector. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018. 1,
4

[9] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In CVPR, 2019. 5

[10] Li Wenbo, Wang Zhicheng, Yin Binyi, Peng Qixiang, Du
Yuming, Xiao Tianzi, Yu Gang, Lu Hongtao, Wei Yichen,
and Sun Jian. Rethinking on multi-stage networks for human
pose estimation. In arxiv 1901.00148, 2019. 1, 5

[11] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking. In The European
Conference on Computer Vision (ECCV), September 2018.
5

6


