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Abstract

In this report, we provide the technical details about
our method participating for the COCO Instance Segmen-
tation Challenge Track. First, we revisit the current ap-
proach for learning feature pyramid in FPN. We found
that the fusion procedure is a crucial factor for fully ex-
ploiting multi-scale features extracted in FPN. To improve
content-aware fusion, we propose a new Content-Aware
Feature Aggregation module to enhance the aggregation of
pyramidal features in the bottom-up and top-down paths.
In addition, a novel module called Decoupled Boundary-
Aware Localization is proposed to locate objects more ac-
curately. In particular, we reformulate object localization
as a task to localize the four edges of the bounding box
for each object, and design a novel pipeline to perform
coarse estimation and fine regression. Our overall sys-
tem achieves 51.3% mask mAP on the COCO test-dev split,
without using external instance-level annotated data during
training. Code and models will be available at https:
//github.com/open-mmlab/mmdetection.

1. Methodology

1.1. Content-Aware Feature Aggregation (CAFA)

Feature pyramids significantly boost the ability to detect
multi-scale objects. Previous methods [12, 12, 14, 11, 17, 5]
mainly focus on the information pathway among pyramidal
features, while the feature aggregation remains less stud-
ied. These works share a similar scheme, i.e., firstly adopt
the NN/bilinear upsampling operator to upsample the low-
resolution feature map, and then use element-wise sum to
fuse it with a high-resolution one. To improve the content-
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Figure 1: Modification by CAFA on PAFPN [14]. We use
CARAFE [19] and DCNv2 [21] during upsampling and use
DCNv2 [21] for downsampling.

awareness duing the fusion process, we explore a new fea-
ture fusion manner, named Content-Aware Feature Aggre-
gation (CAFA).

We illustrate the detailed architecture of CAFA based
on PAFPN in Figure 1. In the top-down pathway, we re-
place the upsampling operator with CARAFE [19] to en-
large the receptive field and handle content-aware neigh-
bor regions. To further exploit the semantic information
and capture more contextual infomation, we add a modu-
lated deformable convolution (DCNv2) [21] after the up-
sampling. Adopting CARAFE and DCNv2 makes the fea-
ture fusion better adaptive to instance-specific contents. In
the bottom-up pathway, we replace the stride-2 convolution
with a stride-2 DCNv2 to downsample the feature maps.
This design helps to improve the descrimination of down-
sampled feature, which is more complementary for the low-
resolution, semantically strong features.

We conduct extensive experiments with CAFA on Reti-
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naNet [13], Mask R-CNN [7] and Hybrid Task Cascade [2]
with different backbones. It achieves consistent improve-
ments over the baseline. Notably, CAFA with PAFPN
achieves comparable results to NAS-FPN on RetinaNet,
which incorporates complicated connections among differ-
ent feature maps and stacks the pyramid for seven times.

1.2. Decoupled Boundary-Aware Localization

Accurate object localization is crucial for object detec-
tion and instance segmentation. Most recent methods di-
rectly regress the normalized deltas between ground-truth
boxes and proposals. However, this paradigm may not reach
a satisfying localization at one time. Some methods [1, 10]
attempt to improve localization performance by cascading
pipeline which brings considerable costs. Considering these
issues, a Decoupled Boundary-Aware Localization (DBAL)
pipeline is proposed to locate the objects more accurately.

As shown in Fig. 2, we localize four boundaries of
a bounding box respectively with boundary-specific fea-
tures. We design a coarse-to-fine localization pipeline
where coarse boundaries are first estimated by a bound-
ary classifier, and more precise locations are then obtained
by regression. Moreover, the confidence of the estimated
boundaries could be also used to represent the reliably of the
predicted locations. We therefore further adopts the bound-
ary confidence to assist the object classification. More ac-
curate objects will obtain higher classification confidence,
making the NMS procedure keeps the best candidate that
has both high classification confidence and accurate local-
izations.

We first extract the feature of a bounding box with RoI
Align. The k × k RoI feature is then compressed into 2
1-D feature columns, along the Y-axis and X-axis respec-
tively. These feature columns are boundary-specific repre-
sentations for the RoI. They split the candidate region into
multiple stripes, and each strip is responsible for estimating
the object boundary located inside it. Given the extracted
RoI feature F0, DBAL first forwards it through two 3 × 3
convolution layers to get the transformed feature F . Two
attention masks Mx, My are predicted from F by a 1x1
convolution layer. They are normalized by across Y-axis
and X-axis respectively. With such attention masks, we can
aggregate F across Y-axis and X-axis to attain feature for
horizontal feature column Fx and vertical feature column
Fy:

Fx =
∑
y

F(y, :) ∗Mx(y, :)/k.

Fy =
∑
x

F(:, x) ∗My(:, x)/k.
(1)

Fx and Fy are then refined by a 1-D convolution layer
and upsampled into size of 1×2k and 2k×1, then decoupled
to Fleft, Fright, Ftop, Fdown. To get the coarse regression

results, each feature element on Fleft, Fright, Ftop, Fdown

predicts the confidence of whether it is nearest to the object
boundary independently. A refined regression is performed
based on the estimation results leveraging the feature on the
coarse location.

Due to the non-precise localization of the proposal
box, the proposal is rescaled by a factor of σ > 1
to cover the whole object during calculating the regress
targets. It means that the RoI feature is pooled
with original proposal box (Bleft, Bright, Btop, Bdown),
and the regress target is calculated with rescale box
(σBleft, σBright, σBtop, σBdown). The RoI Feature from
a deep network providing a large receptive field to cover the
rescaled box region, a similar problem is also discussed in
[15]. The average boundary confidence is adjusted by the
average boundary confidence score in the final step. Exper-
imental results show substantial gains by this simple classi-
fication rescoring step.

2. Experiments
2.1. Ablation Study
Content-Aware Feature Aggregation (CAFA). We study
the effectiveness of each component in the CAFA combined
with FPN [12] and PAFPN [14] baseline in Mask R-CNN
[7] as shown in Table 1. CAFA brings 1.1% and 1.9%
mask AP gains on FPN and PAFPN, respectively. The re-
sults of fourth and fifth rows also suggest that combining
CARAFE with DCNv2 could further improves the results.
And appling DCNv2 after CARAFE is 0.7% mask AP bet-
ter than applying DCNv2 before CARAFE in PAFPN [14].
As shown in the second row in both FPN and PAFPN sub-
table, replacing the output convolution by DCNv2 in FPN
and PAFPN brings less improvements. It indicates adopting
the content-aware operation (e.g., DCNv2) before fusion
could more effectively enhance the features than adopting
these operations in a straight forward path.

We further compare CAFA with NAS-FPN on RetinaNet
and achieve compatible results (box AP 39.2% v.s. 39.5%
on COCO2017 val dataset at 640×640 scale). While NAS-
FPN uses 7 pyramid networks, our CAFA with PAFPN only
uses 2 pyramid networks with much simpler pathways (one
top-down and one bottom-up) among pyramidal features.
This comparison proves the effectiveness of CAFA.
Decoupled Edge-Aware Localization (DBAL). We evalu-
ate Decoupled Edge-Aware Localization (DBAL) on Faster
R-CNN and Cascade R-CNN with both ResNet-50 back-
bone and 1x training scheduler. DBAL shows significant
performance gains on both methods. To be specific, DBAL
improves Faster R-CNN by 3.4% box AP and Cascade R-
CNN by 1.1% box AP. We further evaluate the effectiveness
of rescoring the classification results by the location estima-
tion confidence, which is described in Sec. 2. The rescor-
ing mechanism shows performance gains (0.8% and 0.1%)
based on strong performances (39.0% and 41.4%).
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Figure 2: Structure of Decoupled Boundary-Aware Localization (DBAL).

Table 1: Effectiveness of CARAFE [19] and DCNv2 [21]
in FPN [12] and PAFPN [14] in Mask R-CNN [7].

Method Modification box AP mask AP

FPN

Baseline 37.3 34.2
+ DCNv2@out 37.8 34.4
+ CARAFE 38.1 34.8
+ DCNv2 + CARAFE 38.8 35.2
+ CARAFE + DCNv2 (CAFA) 38.9 35.3

PAFPN

Baseline 37.7 34.3
+ DCNv2@out 38.5 34.9
+ CARAFE 38.8 35.4
+ DCNv2 + CARAFE 39.4 35.5
+ CARAFE + DCNv2 (CAFA) 40.0 36.2

Table 2: Effectiveness of DBAL in Faster R-CNN and Cas-
cade R-CNN on COCO2017 val dataset.

Method Modification box AP

Faster R-CNN Baseline 36.4
+ DBAL w/o rescoring 39.0
+ DBAL 39.8

Cascade R-CNN Baseline 40.4
+ DBAL w/o rescoring 41.4
+ DBAL 41.5

2.2. Extensions
After applying DBAL to Mask R-CNN [7], we achieve

35.0% mask AP. Then we apply it to the Hybrid Task
Cascade (HTC) [2] with the proposed CAFA in PAFPN
[14] and CARAFE [19] in Mask Head. With ResNet-50
[8] backbone and 1x training scheduler [6], our method
achieves 38.4% mask AP and 44.3% box AP compared
with 37.3% mask AP and 42.1% box AP HTC baseline.
Our overall system is trained without involving external
instance-level annotated data during training. To be spe-
cific, it is trained on COCO2017 training split (instance seg-
mentation and stuff annotations) as in [2]. Here we also list

Table 3: Step by Step results (bbox AP& mask AP) of our
method on COCO2017 val dataset.

Methods scheduler APbox APmask

Mask R-CNN 1x 37.3 34.2
+ DBAL 1x 40.0 (+2.7) 35.0 (+0.8)
+ HTC 1x 42.9 (+2.9) 37.4 (+2.4)

+ CAFA&CARAFE 1x 44.3 (+1.4) 38.4 (+1.0)
+ SyncBN 1x 45.8 (+1.5) 39.9 (+1.5)

+ SW 1x 46.1 (+0.3) 40.0 (+0.1)
+ Backbone DCNv2 1x 48.2 (+2.1) 41.7 (+1.7)

+ Mask Scoring 1x 48.3 (+0.1) 42.4 (+0.7)
+ MS-Training 20e 50.2 (+1.9) 44.5 (+2.1)
+ SE154-SW 20e 52.7 (+2.5) 46.1 (+1.6)

+ AutoAug&InstaBoost 4x 54.0 (+1.3) 47.1 (+1.0)
+ Multi-Scale Testing - 55.3 (+1.3) 48.4 (+1.3)

+ Ensemble - 57.2 (+1.9) 50.5 (+2.1)

other steps and additional modules we used to obtain the
final performance. The step-by-step gains brought by dif-
ferent components are illustrated in Table 3.
SyncBN. We use Synchronized Batch Normalization [14,
18] in the backbone and heads.
SW. We adopt Switchable Whitening (SW) [16] in the
backbone and FPN following the original paper.
DCNv2. We appply Deformable Convolution v2 [21] in the
last three stage (from res3 to res5) of the backbone.
Multi-scale Training. We adopt multi-scale training. The
scale of short edge is randomly sampled from [400, 1400]
per iteration and the scale of long edge is fixed as 1600. The
detectors are trained with 20 epoches and the learning rate
is decreased by 0.1 after 16 and 19 epoches, respectively.
SENet-154 with SW. We tried different bigger back-
bones. SENet-154 [9] with Switchable Whitening (SW)
[16] achieves the best single model performance.
Stronger Augmentation. We adopt Instaboost [4] as the
sixth policy of AutoAugment [3]. Each policy has the same
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Table 4: Results (mask AP) with better backbones and bells
and whistles on COCO2017 test-dev dataset.

Methods AP AP50 AP75 APS APM APL

2018 Winners Single Model 47.4 70.6 52.1 30.2 50.1 61.8
Ours Single Model 49.4 72.0 54.3 29.0 51.5 66.6

2018 Winners Ensemble [2] 49.0 73.0 53.9 33.9 52.3 61.2
Ours 51.3 74.7 56.5 30.6 53.5 68.9

probability to be used for data augmentation during train-
ing procedure. The detectors are trained with 48 epoches
with such stronger augmentation, and the learning rate is
decreased by 0.1 after 40 and 45 epoches, respectively.
Multi-scale Testing. We use 5 scales as well as horizon-
tal flip at test time before ensemble. The testing scales
are (600, 900), (800, 1200), (1000, 1500), (1200, 1800),
(1400, 2100).
Ensemble. We use ensemble of models based on five
backbone networks. We pretrain SENet-154 w/ SW and
SE-ResNext-101 w/ SW on ImageNet-1K image classifi-
cation dataset and use pretrained weights of ResNeXt-101
32 × 32d, ResNeXt-101 32 × 16d [20] and ResNeXt-101
32× 8d [20] provided by PyTorch1.

On COCO 2017 test-dev dataset, our method finally
achieves 51.3% Mask AP with multiple model ensemble
and 49.4% Mask AP with single model. Our result out-
performs the 2018 COCO Winner Entry by 2.3% Mask AP.

3. Conclusion
In conclusion, we propose Content-Aware Feature Ag-

gregation (CAFA) to further enhance the pyramidal feature
representation learning and Decoupled Edge-Aware Lo-
calization (DEAL) to replace the conventional bounding
box regression. With these two contributions, we achieve
new state-of-the-art on the COCO Instance Segmentation
Challenge, and remarkably (2.3% mask AP) surpass the
2018 winner results.
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