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Abstract

Panoptic segmentation is a recently proposed task that
features a challenging unification of semantic segmentation
and instance segmentation. It provides a holistic solution
to scene parsing by predicting both pixel-level classification
and instance labels. To pursue a high performance evolving
around the proposed metric Panoptic Quality (PQ) [8], we
demonstrate in our report the understanding of instance oc-
clusion, the joint improvement by hybrid-task learning and
the study of the PQ metric all play vital roles. On test-dev,
we achieved PQ=52.1 with a single model and PQ=53.5
with an ensemble model. Comparing with last year’s cham-
pion, we achieved a better result in panoptic segmentation
(~0.3 higher in PQ) even with a mediocre instance segmen-
tation prediction (~2.1 lower in AP). This highlights the im-
portance of understanding panoptic segmentation as a task
that is more than a naive combination of the state-of-the-art
works in the two fields.

1. Method Description
1.1. Panoptic HTC
1.1.1 Hybrid Task Cascade (HTC)

Chen et al. [1] proposed the Hybrid Task Cascade architec-
ture, where instance segmentation branch is supplemented
by a semantic segmentation branch in the joint training. By
embedding semantic features into bbox/mask features, the
semantic branch directly contributes to instance prediction
with spatial contexts.

Moreover, although HTC was proposed for instance seg-
mentation tasks, our experiments (Table 1) show that the
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instance branch of HTC in return benefits semantic segmen-
tation tasks.

Hence, we adopt the HTC as a powerful base frame-
work because it leverages information from semantic and
instance branches, which are the two key building blocks
for panoptic segmentation.

Method | PQ  PQm PQg |
PanopticFPN-ResNeXt101 | 46.2 52.0 374
+HTC structure 482 542  39.0

Table 1: The use of HTC architecture improves Stuff Seg-
mentaion (COCO val)

1.1.2 Semanticl134

As suggested in [11], the lack of thing class supervision can
introduce discontinuity in stuff segmentation. We modified
our semantic branch from predicting 54 categories (53 stuff
classes + void class), to predicting 134 categories (all 133
classes + void class), which improves PQ by 0.5.

1.1.3 Task Specialization and Loss Re-weighting

An intuitive approach towards panoptic segmentation is to
fuse the state-of-the-art models from the semantic and in-
stance segmentation domains whereby each model predicts
only semantic or instance segmentation results. We refer
to these models as specialized models. Training specialized
models are especially important when using larger networks
for further performance gain is difficult due to GPU mem-
ory constraint.

Section 1.1.1 shows that the HTC structure leads to mu-
tual benefits between semantic and instance segmentation
branches. Therefore, we proceed to train two specialized
models but each with the help from the other branch.



Feature Mask Label BBox | Method | PQm  SQm RQm |
Heuristic Fusion [§] 54.8 839 57.6
v SM 569 84.1 672
v SHR 569 84.1 672
v v v SRM[11] 57.1 83.6 678
v v OCFusion [9] 585 839 693
v FM 589 84.1 69.6
Improved methods
v v SHR+ 584 84.0 69.0
v v v OCFusion+ 58.9 841 69.7
Combined methods
v v FM & SHR+ 58.9 841 69.7
v v v FM & OCFusion+ 589 84.1 69.7
v v v v FM & SHR+ & OCFusion+ | 58.9  84.1 69.7

Table 2: Comparison of various methods handling instance occlusion. SM and FM stand for Statistical Matrix and Fitted
Matrix respectively. SHR+ and OCFusion+ are our improved method based on original SHR and OCFusion. The last section
are combined methods. We combined different methods by voting.

For a specialized model, we place higher weights on
the target branches in training. The optimal weight is se-
lected when the model gives the highest performance on
the respective PQ (for example, the optimal weight for the
model specialized for semantic segmentation is selected us-
ing which the model gives the best PQg; score).

In the end, we fuse thing and stuff results by resolving
any overlap in favor of the thing class. This method im-
proves both PQr, and PQs; in our experiments.

1.2. Class Guided Fusion
1.2.1 Instance Occlusion Handling

Instance occlusion handling is one of the most extensively
discussed topics in panoptic segmentation. Lazarow et al.
[9] proposed OCFusion, where an occlusion head is used
to learn the occlusion relation between two objects from
their cropped feature maps and masked bitmap. Liu et al.
[11] proposed to use a Spatial Ranking Module to provide
a ranking score for all objects in the image. They have also
proposed Spatial Hierarchical Relation (SHR), which is a
mechanism that allocates an object to the foreground if the
occluded area of its bounding box exceeds a certain thresh-
old. We have implemented the aforementioned methods but
they did not provide satisfying results for instance segmen-
tation.

A key prior knowledge that the previous methods fail to
exploit is the class information. When two instance masks
overlap, a certain class is likely to be placed in front of the
others. For example, a dining table should always be oc-
cluded by a cup placed on it but not the other way around.
One simple proof to this claim could be the statistics of such
interactions amongst classes, where the distribution shows
a clear pattern.

As the initial attempt, direct use of the class occlusion
statistics to infer the occlusion relation only provides lim-
ited PQr, improvement. We argue that the occlusion statis-
tics only capture direct occlusion with more complicated
relationships omitted. For example, class A is very likely
to occlude B and class B is likely to occlude class C, but
there are no statistics about the relationship between class
A and class C, to which we refer as transitive occlusion. We
use a fully connected layer as the occlusion head to learn
this class occlusion relationship. The class occlusion matrix
that is thresholded from a statistical counting and the class
occlusion matrix that is fitted by a single FC are illustrated
in Figure 1.

statistical matrix fitted matrix

Figure 1: The class occlusion matrix. In statistical ma-
trix and fitted matrix, the color representation is: yel-
low=occlude, green=occluded, purple=not sure. In the dif-
ference matrix, the color representation is: yellow= occlude
in both SM and FM, lime= occlude only in SM, teal= oc-
clude only in FM, purple=occluded or not sure.

Interestingly, the simple occlusion head that only takes
in class predictions performs even better than the heavy oc-
clusion head that takes in both mask predictions and fea-
ture maps. Furthermore, forwarding feature maps together



with both mask and class predictions into a modified heavy
occlusion head only results in a marginal improvement.
Therefore, we suspect that the previously designed occlu-
sion head, OCFusion, spends most of its computations on
regressing class predictions instead of occlusion handling.

Another finding is that the in-class occlusion is better to
be handled with a different strategy compared to the gen-
eral occlusion cases. The in-class occlusion is special in
having circumstances where a high score mask and a low
score mask compete for the same object. Ranking the in-
stance segments by their confidence score, i.e., heuristic fu-
sion works better than occlusion heads under these circum-
stances. In our improved version of OCFusion and SHR
(annotated as OCFusion+ and SHR+), we disabled the in-
class prediction and achieved better results.

Results of our experiments on instance occlusion han-
dling are listed in Table 2. Visualization of the val set are
shown in appendix A.

1.2.2 Class-wise Confidence Thresholds on Instances

During heuristic fusion of instances, a single threshold is
typically applied to remove instances with low confidence
scores. However, due to class imbalance, the confidence
score distributions are different among different classes. We
customize confidence thresholds for each class and achieve
PQry, improvements on val.

1.2.3 Unknown Erasing on Semantic Segmentation

As mentioned in the literature, the PQ metric is penalized
an unknown class prediction (0.5 FN) less than to a wrong
class prediction (0.5 FN + 0.5 FP). One well-exploited
method to adapt to this evaluation metric has been proposed
by the work UPSNet[13]. Their insight is based on the
observation of the inconsistency between the mask predic-
tion and the corresponding activation map of the instance
branch. They consider the inconsistent area as a missing in-
stance and make a void prediction on that. We propose to
extend the idea of unknown prediction in instance segmen-
tation to semantic segmentation.

However, training an extra FCN head for pixel-wise bi-
nary prediction of the unknown classes in the semantic
branch is difficult; we argue that unlike the unknown pre-
diction in the instance branch where the mask prediction
can be used to cross-validate the activation map, the seman-
tic branch lacks a reference.

Inspired by the object detection task’s inference mech-
anism, where a threshold is applied to the bounding box
classification score, we reformat the unknown prediction
problem as finding a better balance on the PR curve. Ob-
serving the resemblance of the two tasks, we propose to use
the output classification logits as a criterion as an indicator
of the model’s confidence on a mask of the specific class.

We propose unknown erasing (UE) to compute the pixel-
wise average classification confidence for each continuous
region (to which we refer as connected components or CC)
on the prediction map as a score and erase the region whose
score is below a threshold.

Also, we notice that there can be small fragments with
abnormally high confidence scores, they are thus not erased
and increase the number of false positive regions. To allevi-
ate the issue, we conduct 100 iterations of dilation operation
with a filter size 2 on each CC to connect neighboring small
regions into one and compute the dilated region’s score as
a whole. The unknown erasing method shows a promising
result on improving the PQg; and especially RQs; (Table 3).

Figure 2 illustrates steps of UE, and example UE results
from val are shown in appendix B for visualization.

| Method [ PQs;  SQsi RQs |

Before UE | 39.5 80.0 484
After UE 40.8 804 498

Table 3: The use of Unknown Erasing improves PQs; and
RQs; (COCO val)
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Figure 2: The steps of Unknown Erasing (UE).

1.3. Ensemble Strategy

The ensemble of instance and semantic segmentation
models are done separately.



Method \ PQ PQrn PQs; APppox  APmask  Fused split
Single Network for Thing and Stuff
Panoptic FPN[7] ResNet50[5] 38.9 45.3 29.3 35.4 32.7 v val
+Semantic134 39.4 (+0.5) 46.0 29.3 36.5 33.7 v val
+ResNeXt101 +DCNJ[4] 46.2 (+6.8) 52.0 374 44.8 40.2 v val
+HTC +MS-Train 48.1 (+1.9) 54.8 38.1 50.2 43.5 v val
Thing Segmentation Model
+HTC +MS-Train - 54.8 - 50.2 43.5 - val
+Occlusion Handling - 58.9 (+4.1) - 50.2 43.5 - val
+Loss Re-weighting +DPN107 - 59.3 (+0.4) - 50.9 44.3 - val
+MS-Test +Flip - 60.3 (+1.0) - 51.9 45.1 - val
+Ensemble - 60.9 (+0.4) - 52.9 46.4 - val
+Class-wise Threshold - 61.7 (+0.8) - 52.9 46.4 - val
Stuff Segmentation Model
+HTC +MS-Train - - 38.1 - - v val
+Loss Re-weighting - - 39.0 (+0.9) - - v val
- - 39.3 (+0.3) - - X val
+Unknown Erasing - - 40.5 (+1.2) - - X val
+MS-Test + Flip - - 40.7 (+0.2) - - X val
+Ensemble - - 41.9 (+1.2) - - X val
Fused Final Results
Ours 53.4 61.7 41.1 52.9 46.4 v val
Ours 53.5 61.8 41.1 ~53 ~47 v test-dev

Table 4: Detailed Ablation study. “Fused” denotes that the stuff segmentation results are fused with the thing segmentation

results.

For instance segmentation, we choose ResNeXt-101
[12], DPN-107 [3], and SENet-154 [6] as backbones. We
use Non-Maximum Suppression (NMS) for bbox ensemble.

Instead of the conventional random search or grid search
methods, we introduced a gradient-based method to learn
the optimal weights for semantic segmentation model en-
semble. Denoting the number of class as N and the num-
ber of models as M, we aggregate the output logits into N
tensors of M xHx W, representing different models’ predic-
tions on each class, and use N separate convolutional layers
of size Mx1x1x1 to assign weights onto each class pre-
diction. After weighting, we concatenate the outputs, N ten-
sors of size 1 xHxW, into one single tenor, and supervise it
with Cross Entropy loss against the ground truth. The new
ensemble strategy gave us 0.4 PQg; improvement over the
unweighted average ensemble.

2. Experiments
2.1. Experimental Setup

Dataset: We conduct our experiments on the COCO
dataset with panoptic annotations. No external dataset has
been used.

Evaluation Metrics: All our models are evaluated on
COCO val split (5k images), using AP (average precision
averaged over categories and IoU thresholds) [10] and the

PQ (Panoptic Quality) metric defined in [8].

Implementation Details: We choose mmdetection [2],
an open-source toolbox, for our experiments. All the mod-
els are trained using 32 V100 GPUs for 20 epochs. For
single-scale training and testing, images are resized to a
maximum scale of 1333x800, with aspect ratio kept un-
changed. We adopt a maximum long edge of 1600 and ran-
domly sample a short edge from 400 to 1400 for multi-scale
training. Five scales of 900x 600, 1200x 800, 1500x 1000,
1800x 1200, and 2100x 1400 are used in multi-scale test-

ing.

2.2, Ablation Study

We start from a single FPN network to predict instances
and stuff simultaneously. For further enhancement, we train
two independent HTC models to predict instance and stuff
segmentation respectively. Lastly, we combine thing and
stuff results by resolving any overlap in favor of the thing
class.

Our final submission achieved PQ 53.4 on val and PQ
53.5 on test-dev. Detailed ablation studies are listed in Table
4,
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Appendix A. Visualization of Instance Occlusion Handling

input ground truth heuristic fusion Spatial Ranking OCFusion Ours
Module

input ground truth heuristic fusion UPSNet OCFusion Ours

Figure 3: Qualitative fusion results of our method (FM) and other existing methods.
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Appendix B. Visualization of Unknown Erasing

input ground truth before UE after UE

Figure 4: Comparison of semantic results before and after the Unknown Erasing. The first row shows that our prediction of
unknown class is well aligned with the ground truth. The second row shows that the Unknown Erasing can avoid unnecessary
false positives.



