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Abstract

In this report, we present our multi-person keypoint de-
tection system for COCO Keypoint Detection Challenge
2019. It contains three main components, which are multi-
person detector, high resolution network (HRNet) for key-
point detection and pose refinement network.

As the core component, our HRNet starts from a high-
resoluiton subnetwork as the first stage, gradually add
high-to-low resolution subnetworks one by one to form
more stages, and connect the multi-resolution subnet-
works in parallel. We conduct repeated multi-scale fu-
sions such that each of the high-to-low resolution repre-
sents reveive information from other parallel representa-
tions over and over, leading to rich high-resolution rep-
resentations. As a result, the predicted keypoint heatmap
is potentially more accurate and spatially more precise.
With an additional pose refinement network, our final sub-
mitted result achieves an AP of 78.2 on COCO test-dev
set and an AP of 75.5 on COCO test-challenge2019 set
respectively. The code and models have been publicly
available at https://github.com/leoxiaobin/
deep-high-resolution-net.pytorch.

1. Overview
Figure 1 illustrates the overview of our multi-person

pose estimation system for COCO Keypoint Detection
Challenge 2019. Following [13, 2, 11], a two-stage top-
down paradigm is applied. First, a person detector is used
to localize the person in the image. Second, a core high
resolution network (HRNet) [11] is used for keyoint detec-
tion. Finally, we use a pose refinement network [8] as a post
processing to refine the result.

1.1. Person Detection

For person detection, by default we use a faster-
RCNN [10] detector. Following [9], the backbone is a mod-

ified aligned Xception [3], equipped with deformable con-
volutions and deformable RoI pooling [4]. The detector
achieves an AP of 61.1 for person category on COCO test-
dev set.

1.2. High Resolution Network for Keypoint Detec-
tion

The core component in our system is the high resolu-
tion network (HRNet), which is first proposed by our re-
cent work in [11]. Our HRNet connects high-to-low sub-
networks in parallel. It mantains high-resolution repre-
sentations through the whole process for spatially precise
heatmap estimation. It generates reliable high-resolution
representations through repeatedly fusing the representa-
tions produced by the high-to-low subnetworks. More de-
tails about HRNet are described in our recent work [11, 12].

For COCO Keypoint Detection Challenge 2019, we use
HRNet-W48 as our backbone, where 48 represents the
widths of hte high-resolution subnetworks in last three
stages. The widths of other three parallel subnetworks are
96, 192, 384.

1.3. Pose Refinement Network

Inspired by [8], we use a refinement network as our post
processing for our final submission. We use the pre-trained
refinement network provided by [8].

2. Experiments

2.1. Dataset

The COCO dataset [7] contains more than 200, 000 im-
ages and 250, 000 person instances labeled with keypoints.
COCO dataset [7] is split into train/val/test-dev sets with
57K, 5K and 20K images respectively. An extra dataset
from AI Challenger [12] is involved for training, which
contains 210, 000 images and 378, 374 person intances for
training. We use COCO [7] train set and AI Challenge train
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Figure 1: Overview for our multi-person pose estimation system for COCO Keypoint Detection Challenge 2019.

set to train our pose estimation models for our final submis-
sion.

2.2. Training

Our training strategy is the same as in [11]. We extend
the ground truth human box in height or width to a fixed
aspect ratio: height : width = 4 : 3. Then we crop the
human box from the image, and resize to a resolution of
384× 288 for training the pose estimation networks. We do
data augmentation including random rotation ([−45◦, 45◦]),
random scale ([0.65, 1.35]), random flipping and half body
data augmentation [6].

Our HRNet [11] backbone network is initialized by pre-
training on ImageNet classification task [5]. Adam [1] op-
timizer is used for training pose estimation network. The
base learning rate is 1e−3, and it drops to 1e−4 and 1e−5
at the 170th and 200th epoch respectively. There are 210
epochs in total. Mini-batch size is 32 for per GPU card.
Eight GPUs are used for training.

2.3. Testing

As mentioned in Section 1, a two-stage top-down
paradigm is applied. For multi-model ensemble testing, all
the heatmaps generated by all the models are averaged for
joint prediction. In our final submission, we used six mod-
els for model ensemble. Following the common practice in
[11, 13], a quarter offset in the direction from highest re-
sponse to the second highest response is used to obtain the
final location. After getting the ensemble result of pose es-
timation, we feed the result with the input image to a pose
refinement network [8] to get the final result.

2.4. Ablation Study

Table 1 shows an ablation study including using extra
data for training, model ensemble and using a pose refine-
ment network as post processing on COCO [7] val2017 set.
By default, we use the same person detector as in [13, 13].
Our baseline method (a) obtains an AP of 76.3, which is
trained on COCO [7] train2017 set with an input size of
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w/ extra data w/ model ensemble w/ pose refinement AP AP50 AP75 APM APL AR
(a) 76.3 90.8 82.9 72.3 83.4 81.2
(b) X 77.5 90.9 83.9 73.7 84.5 81.2
(c) X X 78.5 91.1 84.4 74.9 85.5 83.1
(d) X X X 78.9 91.2 84.6 75.4 85.8 83.4

Table 1: Ablation study on COCO val2017 set.

Method Backbone Input Size AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

CPN∗ [2] Res-Inception 384×288 73.0 91.7 80.9 69.5 78.1 79.0 95.1 85.9 74.8 84.6
Simple Base∗+ [13] Res-152 384×288 76.5 92.4 84.0 73.0 82.7 81.5 95.8 88.2 77.4 87.2
MSPN∗+ [6] 4×Res-50 384×288 78.1 94.1 85.9 74.5 83.3 83.1 96.7 89.8 79.3 88.2
Our: HRNet∗+ HRNet-W48 384×288 77.9 93.1 85.3 74.3 83.9 82.6 96.0 89.0 78.6 88.1
Our: HRNet∗+ + refine HRNet-W48 384×288 78.2 92.8 85.5 74.8 84.1 82.8 95.9 89.1 78.9 88.2

Table 2: Comparisons of results on COCO test-dev2017 dataset. ”*” indicates using an ensemble model and ”+” means using
external data.

384 × 288, using HRNet-W48 [11] as backbone. With an
additioanl AI Challenger data set [12] involved for training,
our method (b) achieves an AP of 77.5, which is 1.2 AP bet-
ter than the baseline. And an ensemble model (c) obtains an
AP of 78.5. Finally, with a pose refinement as post process-
ing, our method (d) achieves an AP of 78.9, which has an
improvement of AP by 2.5.

2.5. Results

Table 2 shows comparisons of results on COCO test-
dev2017 set. With extra data involved in training, an ensem-
bled models of our HRNet [11] obtains an AP of 77.9. Our
final submission for COCO 2019 Keypoint Detection Chal-
lenge is further refined by an pose refinement network [8],
which achieves an AP of 78.2 on COCO test-dev set, and
achieves an AP of 75.5 on COCO test-challenge2019 set.
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